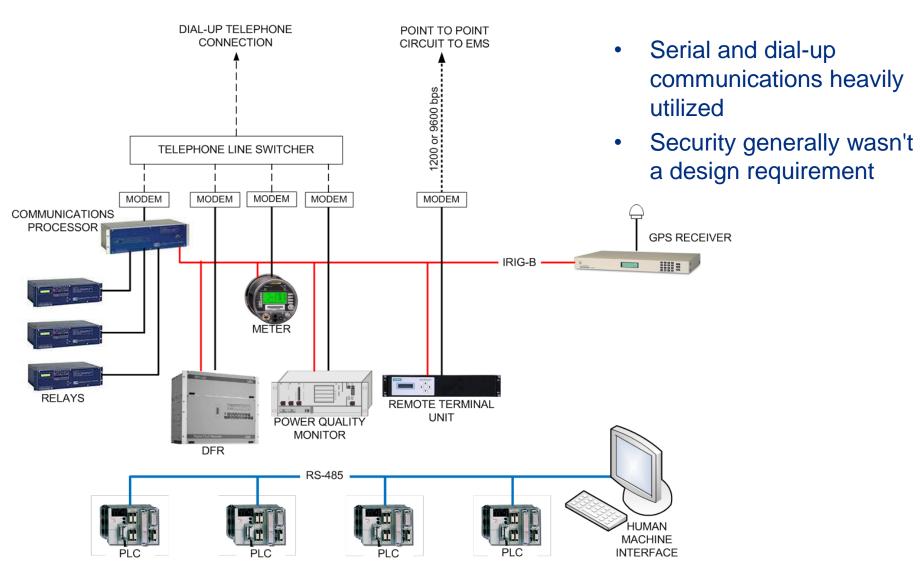
The Lemnos Interoperable Security Project

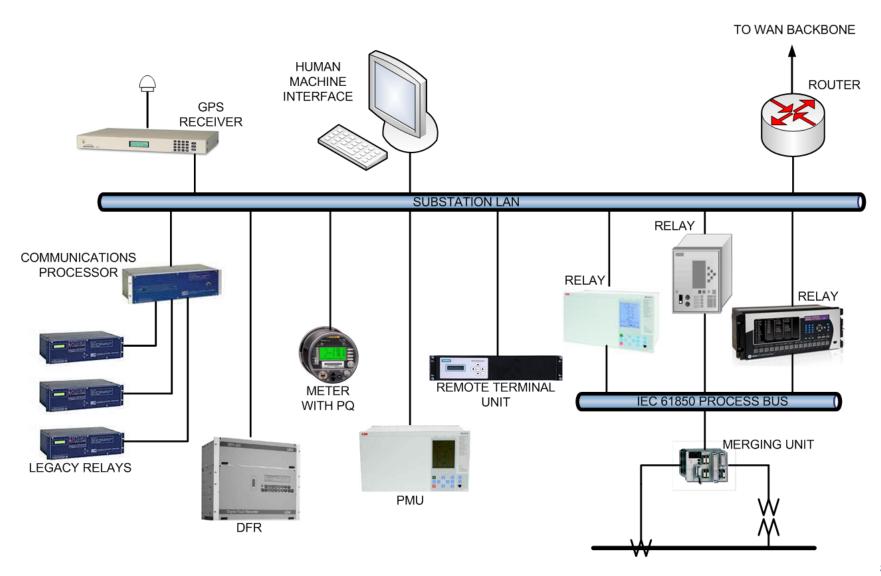
Brian Smith

Principal Consultant, EnerNex Corporation

ICSJWG 2010 Spring Conference

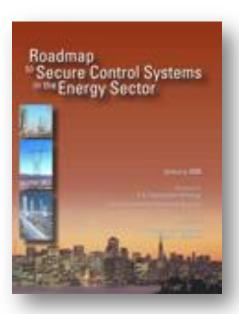

Energy Sector Challenges

- Security is more *IMPORTANT* than ever before as control system are evolving rapidly
 - Increasing use of Ethernet and IP communications
 - Connections to external systems
 - Supports changing operational and business needs
 - New and emerging regulatory requirements
- Implementing Security is more COMPLICATED than before
 - End Users are faced with limited security expertise
 - It shouldn't take a security expert to configure a device properly!
 - Vendors need alternatives to proprietary solutions
 - <u>End Users</u> and <u>Vendors</u> need a straight forward method to communicate user needs, product features, and configuration parameters relating to cyber security functions


Control System Architecture

- Numerous architectures utilized throughout the <u>ELECTRICITY</u>, <u>OIL</u>, and <u>GAS</u> industries
 - More similarities than differences
- Characteristics of traditional control systems architecture
 - Single purpose networks
 - No connection to business networks
 - Serial heavily utilized
- Evolution to Ethernet and IP
 - Convergence to a single network
 - Multi-function end devices
 - Connections to other control systems
 - Connections to business networks

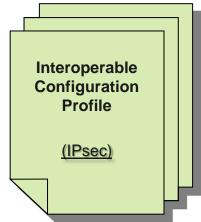
Traditional Substation Architecture



Substation Architecture with Ethernet/IP

What is Lemnos?

- Lemnos is a DOE funded project to provide a security interoperability framework for use in the ENERGY SECTOR
 - Supports the <u>Roadmap to Secure Control</u>
 <u>Systems in the Energy Sector</u>
 - Builds upon OPSAID which is a previous DOE project
- Lemnos Partners
 - EnerNex Corporation (Prime Contractor)
 - Tennessee Valley Authority (Utility)
 - Sandia National Labs (FFRDC)
 - Schweitzer Engineering Laboratories (Vendor)



Lemnos Project Goal

 Enhance the interoperability of security devices from different vendors

- Focuses on the development of INTEROPERABE CONFIGURATION PROFILES for widely accepted Internet protocols
 - Provides a design basis for vendors
 - Utilizes open-source software
 - Provides a reference point for End Users

Profile Development Method

STEP 1 Define functional requirements based on asset owner needs Select open source specifications (IETF RFCs) to meet the identified STEP 2 functional requirements Develop interoperable configuration profiles for these specifications STEP 3 tailored for the energy sector control systems environment STEP 4 Test and validate the interoperable configuration profiles

Lemnos – Step 1

Define Functional Requirements

- Requirements identified based on asset owner needs
- Examples include:

Functional Requirement

Secure communications channel

Filter illegal network traffic

Notification, non-repudiation, traceability, and troubleshooting

Cryptography and password management

Detect malicious activity by monitoring network traffic

Monitor and analyze system processes

Identify, neutralize, or eliminate malicious software

Lemnos – Step 2

Select Open Source Specifications

- For each functional requirement, the philosophy is to select the most commonly used, well-proven, open source solution.
- Examples include:

Functional Requirement	Component	Module
Secure communications channel	Virtual Private Network	IPsec
Notification, Non-repudiation, Traceability, Trouble Shooting	Audit Log	Syslog

Lemnos – Step 3

Develop Interoperable Configuration Profiles

- Define parameters within the RFCs
 - Each RFC contains a myriad of choices
- Examples for IPsec include:

Configuration Parameter

Use ESP (Encapsulating Security Payload)

Use TUNNEL mode

Use HMAC for authentication

Use IKE Version 1

Use DH-5 (Diffie-Hellman Group 5)

Lemnos - Step 4

Test and Validate

- Demonstrate cyber security interoperability using the Interoperable Configuration Profiles
 - Long term tests to validate stability
 - Multi-vendor architecture
 - Simulated utility architecture
- Validate that the added security does not impact the reliability of the hosted power system applications

Lemnos Benefits

End User Perspective

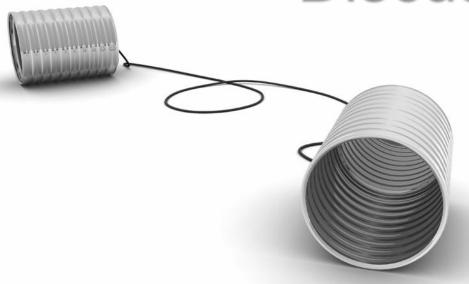
- Enables End Users to choose BEST IN CLASS solutions for various facilities (versus a "one size fits all")
 - For example, an electric utility may have unique needs for:
 - Communications Hub/Control Center
 - Substation LAN
 - Generating Plant DCS
 - Outdoor and Pole-top
- Reduction in setup/deployment time and effort
 - Lower Total Cost of Ownership
- Reduction in configuration errors

Lemnos Benefits

Vendor Perspective

- Permits shortened development cycle by providing reference design
 - OPSAID reference design available to public
 - Robustness of open source versus proprietary solutions
- Uses configurations proven in lab and field to secure control system communications in a way that doesn't trade off reliability
- Enhances the vendor's ability to meet the customer's needs
 - Provides a common understanding between customer and vendor

Project Status


- Two year project originally scheduled to complete March 2010
 - One year extension to 2011 for additional work
- Work to date has been focused on secure communications channel (IPsec) and Messaging channel (Syslog)
 - Interoperable Configuration Profiles completed
 - End User testing at TVA lab completed
- Public demonstrations held at ISA Expo and DistribuTECH
 - Additional vendors participating in demonstrations include:
 - □ RuggedCom
 - □ GarrettCom
 - ☐ Industrial Defender

- N-Dimension
- Phoenix Contact
- **□** SIEMENS

Additional Work for 2010

- Focus on:
 - Standardizing components of Syslog messages
 - Secure engineering access
 - Compliment to IPsec
 - SSH/SSL
 - Centralized authentication & authorization
 - LDAP
- Identify organization to become long term steward of the work after project completion

Discussion

Project Contacts

EnerNex Corporation

Brian Smith - <u>bpsmith@enernex.com</u>

Tennessee Valley Authority

John Stewart - jwstewart@tva.gov

Sandia National Laboratories

- Ron Halbgewachs rdhalbg@sandia.gov
- Adrian Chavez <u>adrchav@sandia.gov</u>
- Dave Teumim <u>dave431@enter.net</u> (Sandia Contractor)

Schweitzer Engineering Laboratories

Rhett Smith - Rhett_Smith@selinc.com